Case SH2017-0281

Acute Myeloid Leukemia with RUNX1 and Several Co-mutations

James Bauer, MD, PhD
David Yang, MD
Erik Ranheim, MD, PhD
Catherine Leith, MB, Bchir

Department of Pathology and Laboratory Medicine
UNIVERSITY OF WISCONSIN
SCHOOL OF MEDICINE AND PUBLIC HEALTH
Chief Complaint: 72 year old man presented with worsening dyspnea, poor appetite and weight loss.

Past Medical History: Hypertension, Diverticulosis
Social History: Retired mill worker, non-smoker, occasional drinks
Family History: Father- heart disease, Mother- gastric cancer
Physical exam: No lymphadenopathy, no hepatosplenomegally
Peripheral Smear:

<table>
<thead>
<tr>
<th>CBC</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>119 K/uL</td>
</tr>
<tr>
<td>Hgb</td>
<td>6.7 g/dL</td>
</tr>
<tr>
<td>Hct</td>
<td>20%</td>
</tr>
<tr>
<td>Plt</td>
<td>102 K/uL</td>
</tr>
<tr>
<td>Neut</td>
<td>1190/uL</td>
</tr>
<tr>
<td>Lymph</td>
<td>8340/uL</td>
</tr>
<tr>
<td>Mono</td>
<td>2380/uL</td>
</tr>
<tr>
<td>Blast</td>
<td>107190/uL</td>
</tr>
</tbody>
</table>
Bone Marrow Aspirate
Flow Cytometry:

CD45 dim blasts comprise 90% of the nucleated cells. The blasts express CD34, CD117, CD33, and dim TdT. A subset of blasts show a monocytic phenotype with expression of CD11b, CD14, bright CD64, CD33 and dim CD34 without CD117.
Cytogenetics/FISH:

Karyotype:
46~47, XY, add(4)(q21), inc[2]/46, XY[15]

FISH for CBFB rearrangement in 16q22 was negative
Illumina based Targeted NGS (ARUP Myeloid Malignancies Mutation Panel):

Tier 1 Variants:
1. RUNX1 c.601C>T, p.Arg201* (NM_001754.4) VAF: 91.1%
2. U2AF1 c.101C>T, p.Ser34Phe (NM_006758.2) VAF: 45.9%
3. WT1 c.1138delinsGG, p.arg380fs (NM_024426.4) VAF: 34.7%
4. PHF6 c.903delinsGT, p.TYR301* (NM_001015877.1) VAF: 7.8%
5. FLT3 c.2039C>T, p.Ala680Val (NM_004119.2) VAF: 31.3%

Tier 2 Variants: None detected
Tier 3 Variants: None detected
Final Diagnosis:

- AML with mutated RUNX1

 (provisional entity, WHO acute leukemia classification 2016 revision)
Runx1 Biology

• Transcription factor essential for hematopoiesis
• 261 kb gene on the long arm of chromosome 21
• Most point mutations within the 2 major functional domains:
 • Runt-homology domain (RHC, RUNT)- DNA binding, interaction with CBFβ
 • Transactivation domain (TAD)

Recurrent chromosomal translocations:

- t(8;21)(q22;q22) RUNX1-RUNX1T1
- t(3;21)(q26.2;q22) MCOM(EVI1)-RUNX1
- t(12;21)(p13;q22) ETV6-RUNX1

Point mutations:

- Missense
- Nonsense
- Frameshift

Point mutations are associated with:

- AML
- MDS
- Therapy-related MDS/AML
- CMML
- T-lymphoblastic leukemia
- Congenital bone marrow failure syndromes (Fanconi anemia and congenital neutropenia)
- Familial platelet disorder with associated myeloid malignancy
RUNX1 Point Mutations in AML

- RUNX1 point mutations found in 10% of patients with AML
 - 9% in de novo AML and 24% in secondary AML
- AML with RUNX1 point mutations were almost exclusive of AML with recurrent genetic abnormalities
- Associated with older age, male sex, and secondary AML evolving from MDS
- Predominantly inactivating mutations in the RHD domain

Gaidzik VI et al. Leukemia 2016;30:2160-2168
• RUNX1 mutated AML are associated with inferior overall survival
• RUNX1 mutated secondary AML (AML from MDS) had inferior outcome compared to RUNX1 mutated de novo AML
RUNX1 Mutations in MDS

• RUNX1 mutations can be found in up to 20% of MDS cases including:
 • Primary MDS
 • MDS arising from congenital bone marrow failure syndromes
 • Fanconi anemia, 20%
 • Congenital neutropenia, 68%
 • Therapy-related MDS/AML
 • Frequently associated with monosomy 7/del 7q
 • AML arising from progression of MDS
 • AML with myelodysplasia related changes

Harada H et al Blood 2004;103:2316-2324
Christiansen DH et al Blood 2004;104:1474-1481
Quentin S et al Blood 2011;117:e161-e170
Skokowa J et al Blood 2014;123:2229-2237
Cytogenetic abnormalities sufficient to diagnose AML with MRC

<table>
<thead>
<tr>
<th>Complex karyotype (3 or more abnormalities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbalanced abnormalities</td>
</tr>
<tr>
<td>-7/del(7q)</td>
</tr>
<tr>
<td>del(5q)/t(5q)</td>
</tr>
<tr>
<td>i(17q)/t(17p)</td>
</tr>
<tr>
<td>-13/del(13q)</td>
</tr>
<tr>
<td>del(11q)</td>
</tr>
<tr>
<td>del(12p)/t(12p)</td>
</tr>
<tr>
<td>idic(X)(q13)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Balanced abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(11;16)(q23.3;p13.3)</td>
</tr>
<tr>
<td>t(3;21)(p26.3;q21.2)</td>
</tr>
<tr>
<td>t(1;3)(p36.3;q21.2)</td>
</tr>
<tr>
<td>t(2;11)(p21;q23.3)</td>
</tr>
<tr>
<td>t(5;12)(q32;p13.2)</td>
</tr>
<tr>
<td>t(5;7)(q32;q11.2)</td>
</tr>
<tr>
<td>t(5;17)(q32;p13.2)</td>
</tr>
<tr>
<td>t(5;10)(q32;q21.2)</td>
</tr>
<tr>
<td>t(3;5)(q25.3;q35.1)</td>
</tr>
</tbody>
</table>

- Morphologic detection of dysplasia in at least 50% of cells in 2 lineages
- History of MDS
- Presence of MDS-related cytogenetic abnormality
Familial platelet disorder with predisposition to acute myeloid leukemia

• Rare autosomal dominant disorder with germline RUNX1 mutation
• Clinical symptoms:
 • Mild to moderate thrombocytopenia
 • Platelet dysfunction
 • Bleeding propensity
 • 40% lifetime risk for development of MDS and AML, average age of onset 33 years
• Over 70 families identified, most with unique RUNX1 mutations
Illumina based Targeted NGS (ARUP Myeloid Malignancies Mutation Panel):

Tier 1 Variants:
1. RUNX1 c.601C>T, p.Arg201* (NM_001754.4) VAF: 91.1%
2. U2AF c.101C>T, p.Ser34Phe (NM_006758.2) VAF: 45.9%
3. WT1 c.1138delinsGG, p.arg380fs (NM_024426.4) VAF: 34.7%
4. PHF6 c.903delinsGT, p.TYR301* (NM_001015877.1) VAF: 7.8%
5. FLT3 c.2039C>T, p.Ala680Val (NM_004119.2) VAF: 31.3%

Tier 2 Variants: None detected
Tier 3 Variants: None detected
RUNX1 somatic mutations in AML: Biallelic mutations and co-mutations

- Over 50% of RUNX1 mutations in undifferentiated AML (M0) are biallelic
- RUNX1 mutations co-occur with:
 - Epigenetic modifiers (ASXL1, IDH2, KMT2A, EZH2)
 - Spliceosome components (SRSF2, SF3B1)
 - FLT3-ITD and FLT3-TKD
 - STAG2, PHF6, and BCOR
- Some co-mutations (ASXL1, SRSF2, PHF6) are associated with inferior prognosis

Osato M. Oncogene 2004;23:4284-4296
Gaidzik VI et al. Leukemia 2016;30:2160-2168