Genetic Predisposition Syndromes in Myeloid Malignancies

Lucy A. Godley, M.D., Ph.D.

Section of Hematology/Oncology
Departments of Medicine and Human Genetics
The University of Chicago
Acknowledgments

Godley Lab
Shawn Albert
John Cao
Jane Churpek
Michael Drazer
Simone Feurstein
Meghana Gadriraju
Kornelia Gladysz
Anastasia Hains
Michaela Siver
Kiran Tawana
Sakshi Uppal
Caroline Weipert
Allison West
Arthur Wolin
Soma Das
Zejuan Li
Jeremy Segal
James Vardiman

Funding: Cancer Research Foundation, The Taub Foundation, The Leukemia and Lymphoma Society
Realizing the goal of precision medicine in oncology

DEFINE:
Baseline genetics
Baseline epigenetics
Acquired genetics in the tumor
Acquired epigenetics in the tumor

to devise an effective treatment strategy for a particular patient
A Hematologic Malignancy-focused Cancer Risk Clinic

• Genetic counseling for family members

• Early identification allows proper anticipatory medical care for mutation carriers, but the few surveillance guidelines that exist are based on expert experience rather than prospective data

• Careful hematopoietic stem cell transplant donor evaluation, including interdisciplinary discussions regarding donor selection for patients under consideration for a matched related allogeneic stem cell transplant

• Incorporation of genetic predisposition within the new WHO classification scheme and clinical guidelines, including NCCN MDS and European LeukemiaNet
Key aspects of pedigree review

- A high index of clinical suspicion

- Familiarity with the known predisposition syndromes

- Key features within the personal and family history:
 - Multiple cancers within a single individual (e.g., t-MN)
 - Other hematopoietic malignancies within 2 generations
 - Other hematopoietic abnormalities within the family (e.g., macrocytosis, bleeding propensity, severe anemia or anemia in men)
 - NOTE: NOT according to age of onset

- Consider results of molecular analyses performed on leukemic cells
<table>
<thead>
<tr>
<th>Class</th>
<th>Patient Population</th>
<th>Specific Syndromes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS/AL Predisposition Syndromes</td>
<td>MDS, AML, ALL</td>
<td>FPD/AML</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANKRD26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEBPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDX41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ETV6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GATA2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTEL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RUNX1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAMD9/SAMD9L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14q32.2 genomic duplication (ATG2B/GSKIP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALL only: IKZF1 (emerging) PAX5 SH2B3</td>
</tr>
<tr>
<td>Bone Marrow Failure Syndromes</td>
<td>AA, MDS, AML</td>
<td>Dyskeratosis congenita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SBDS/EFL1/DNAJC21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fanconi anemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAF1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAMD9/SAMD9L</td>
</tr>
<tr>
<td>Genetic Syndromes</td>
<td>ALL</td>
<td>Ataxia Telangiectasia (ATM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bloom syndrome (BLM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Down syndrome (Trisomy 21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leopard/Noonan syndrome (PTPN11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neurofibromatosis I (NF1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nijmegen Breakage syndrome (NBS1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wiskott Aldrich syndrome (WAS)</td>
</tr>
<tr>
<td>Familial MPNs</td>
<td>PV, ET, PMF, CML</td>
<td>14q32.2 genomic duplication (ATG2B/GSKIP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RBBP6</td>
</tr>
<tr>
<td>Familial Lymphomas</td>
<td>CLL, HL, NHL</td>
<td>ASXL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CASP10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD27/CD40LG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTLA4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOCK8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAGT1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MKL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIK3CD</td>
</tr>
<tr>
<td>Cancer Predisposition Syndromes</td>
<td>All</td>
<td>Li-Fraumeni syndrome (TP53)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hereditary breast & ovarian cancer (BRCA1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lynch syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cowden syndrome (PTEN)</td>
</tr>
<tr>
<td>Familial MM/LPL</td>
<td>MM, MGUS, LPL</td>
<td>Familial MM/LPL</td>
</tr>
</tbody>
</table>
An Algorithm for Patient Work-Up

Patient acquired through strong personal/family history

- ANKRD26
- ATM
- B Marrow Failure
- BRCA1/2
- CEBPA
- DDX41
- ETV6
- Fanconi anemia
- GATA2
- SAMD9
- SAMD9L
- SRP72
- RUNX1
- Telomere Biol
- TP53

Patient acquired through routine clinical testing of presenting leukemia

- bi-allelic CEBPA mutations
- RUNX1/ETV6/GATA2/TP53 mutation

- Perform skin biopsy → grow skin fibroblasts → isolate gDNA

- Run NGS panel and array analysis specific for inherited predisposition to hematopoietic malignancies

- if positive

- Family-based genetic counseling and clinical site-specific testing

- if strong

- if negative

- Research-based whole exome/genome sequencing

Family identified through evaluation of matched related allogeneic stem donor

- Perform detailed personal bleeding/family history

- if positive

- if negative
An Algorithm for Patient Work-Up

- **Patient acquired through strong personal/family history**
- **Patient acquired through routine clinical testing of presenting leukemia**
- **Family identified through evaluation of matched related allogeneic stem donor**

1. Perform detailed personal bleeding/family history
2. Perform skin biopsy → grow skin fibroblasts → isolate gDNA
3. Run NGS panel and array analysis specific for inherited predisposition to hematopoietic malignancies
 - **if positive**
 - Family-based genetic counseling and clinical site-specific testing
 - **if negative**
 - **if strong**
 - Research-based whole exome/genome sequencing
Detecting germline mutations through tumor mutational profiling

360 patients with tumor-only sequencing

74 of 360 (21%) patients had 88 pathogenic or likely pathogenic variants on tumor-only sequencing

44 patients with 52 pathogenic or likely pathogenic variants on tumor-only sequencing who also had germline tissue available

25 of 52 (48%) pathogenic or likely pathogenic variants on tumor-only sequencing had VAFs >0.4

6 of 25 (24%) pathogenic or likely pathogenic variants on tumor-only sequencing with VAFs >0.4 were germline in origin

30 patients with 36 pathogenic or likely pathogenic variants on tumor-only sequencing who did not have germline tissue available

27 of 52 (52%) pathogenic or likely pathogenic variants on tumor-only sequencing had VAFs <0.4

0 of 27 pathogenic or likely pathogenic variants on tumor-only sequencing with VAFs <0.4 were germline in origin
Detecting germline mutations through tumor mutational profiling

LF = TP53 mutation associated with Li-Fraumeni Syndrome
An Algorithm for Patient Work-Up

Patient acquired through strong personal/family history

Patient acquired through routine clinical testing of presenting leukemia

Family identified through evaluation of matched related allogeneic stem donor

Perform detailed personal bleeding/family history

Bi-allelic CEBPA mutations
RUNX1/ETV6/GATA2 mutation

Perform skin biopsy → grow skin fibroblasts → isolate gDNA

Run NGS panel and array analysis specific for inherited predisposition to hematopoietic malignancies

Family-based genetic counseling and clinical site-specific testing

Research-based whole exome/genome sequencing

What will familial MDS/AL predisposition genes teach us?

Transcription Factors
- RUNX1
- CEBPA
- GATA2
- ETV6
- p53

Telomere Biology
- TERT
- TERC

DNA Repair
- ATM
- BRCA1
- BRCA2

Ribosomopathy
- SBDS
- DNAJC21

New Paradigms
- ANKRD26
- DDX41
- SAMD9
- SAMD9L

All Other Classes Commonly Mutated as Acquired Events
- Chromatin remodeling
- Splicing
- Growth factor receptors
- Metabolism
Specific considerations regarding particular cancer predisposition syndromes
Cancer is a genetic disease—‘Solid tumor’ gene syndromes do not exist

- Lynch: *MSH2/6, MLH1, PMS2*
- Li-Fraumeni: *TP53*
- Hereditary Breast/Ovarian CA: *BRCA1/2 are Fanconi anemia-like genes*

Brca1 is a Fanconi-like gene

Cytogenetic abnormalities

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,XX[13]</td>
<td></td>
</tr>
<tr>
<td>40,XX,chrB(4)(C2)[1]</td>
<td></td>
</tr>
<tr>
<td>40,XX,chtB(2)(H1),chtG(6)(B1)[1]</td>
<td></td>
</tr>
<tr>
<td>40,XX,chtB(1)(H5),chrG(5)(D)[1]</td>
<td></td>
</tr>
<tr>
<td>40,XX,chrG(2)(E2)[1]</td>
<td></td>
</tr>
<tr>
<td>39,XX,chtB(2)(B),chrB(3)(F1),chrG(13)(C3),chrG(15)(E),-16,chtB(17)(B)[1]</td>
<td></td>
</tr>
<tr>
<td>40,XX,chtE(2;5)(F1;C2),chtE(9;12)(F1;E),pcd(16)(A)[1]</td>
<td></td>
</tr>
<tr>
<td>40,XX,t(1;17)(H4;A2)[1]</td>
<td></td>
</tr>
</tbody>
</table>

Known Familial MDS/AL Syndromes

Myeloid malignancies only
1. Familial AML with mutated CEBPA (CEBPA)
2. Familial MDS/AML due to DDX41 mutation (DDX41)
3. Familial MPNs--14q32.2 genomic duplication (ATG2B/GSKIP)
 -- germline RBBP6 mutation

Decreased Platelet Number/Function
1. Familial platelet disorder with propensity to myeloid malignancies (RUNX1)
2. Thrombocytopenia 2 (ANKRD26)
3. Thrombocytopenia 5 (ETV6)

Additional Organ Systems Affected
1. GATA2 deficiency syndromes (GATA2)
2. Autosomal dominant telomere syndromes (TERT and TERC)
3. Familial aplastic anemia/MDS due to SRP72 mutation (SRP72)
4. Ataxia-Pancytopenia Syndrome (SAMD9L mutation) and MIRAGE syndrome (SAMD9 mutation)
5. Shwachman-Diamond Syndrome (new causative genes: EFL1 and DNAJC21)
Key Management Issues

Myeloid malignancies only

1. Familial AML with mutated CEBPA (CEBPA)
 - Near complete penetrance
 - 10% AMLs with bi-allelic CEBPA mutations have germline mutation
 - Most often, the inherited allele has a mutation in the 5’ end of the gene, with acquisition of a mutation in the second allele at the 3’ end of the gene

2. Familial MDS/AML due to DDX41 mutation (DDX41)
 - Average age of diagnosis: 62yo
 - Three pedigrees now with pediatric cases of leukemia
 - Some mutations may also predispose to lymphoid malignancies; colon ca/gastric ca

3. Familial MPNs--14q32.2 genomic duplication (ATG2B/GSKIP)
 -- germline RBBP6 mutation
Familial leukemia with CEBPA mutation

Clonal Evolution in AMLs:

- “Relapses” appear to be independent leukemias, since acquired CEBPA mutation is distinct.
- Acquired mutations in GATA2 and WT1 are common and mutually exclusive.
- AMLs are chemosensitive.

Fam v CEBPαsm P=.003

Key Management Issues

Myeloid malignancies only

1. Familial AML with mutated CEBPA (CEBPA)
 - Near complete penetrance
 - 10% AMLs with bi-allelic CEBPA mutations have germline mutation
 - Most often, the inherited allele has a mutation in the 5’ end of the gene, with acquisition of a mutation in the second allele at the 3’ end of the gene

2. Familial MDS/AML due to DDX41 mutation (DDX41)
 - Average age of diagnosis: 62yo
 - Three pedigrees now with pediatric cases of leukemia
 - Some mutations may also predispose to lymphoid malignancies; colon ca/gastric ca

3. Familial MPNs--14q32.2 genomic duplication (ATG2B/GSKIP)
 -- germline RBBP6 mutation
DDX41 on 5q35.3 encodes a DEAD/H-Box helicase

Germline mutations
- E3K
- E7X
- R10fs*
- D140Gfs*(14)
- Ex6 SA
- M155I
- R164W
- F183I
- K187R
- Y259C(7)
- del363
- I396T
- R525H
- G530D
- T529Rfs*

Somatic mutations
- E247K
- A225D
- P321L
- e11+1
- R525H (29)

- Frameshift mutation
- Missense mutation
- Splicing mutation

Blue, Caucasian
Red, Asian
Detecting a germline syndrome from tumor mutational profiling

71yo
T3N0M0 grade 3 gastric cancer
Rx: neoadjuvant chemo: cisplatin/5-FU → total gastrectomy → FOLFOX, completed 3/6 planned cycles due to cytopenias

73yo
t-MN
Panel testing:
DDX41 D140fs → skin biopsy confirmed germline

Northern Europe
paternal grandmother
non-smoker
no alcohol intake
head and neck cancer in 60’s
Detecting a germline syndrome from tumor mutational profiling

Middle East- Jordan

father
AML at 60yo

50yo
chronic phase CML → complete molecular response on Gleevec

53yo
‘myeloid blast’ phase CML → no detectable BCR-ABL →
Panel testing: DDX41
P78fs
R525H
Skin biopsy confirmed P78fs is a germline mutation.
Known Familial MDS/AL Syndromes

Myeloid malignancies only
1. Familial AML with mutated CEBPA (CEBPA)
2. Familial MDS/AML due to DDX41 mutation (DDX41)
3. Familial MPNs--14q32.2 genomic duplication (ATG2B/GSKIP)
 -- germline RBBP6 mutation

Decreased Platelet Number/Function
1. Familial platelet disorder with propensity to myeloid malignancies (RUNX1)
2. Thrombocytopenia 2 (ANKRD26)
3. Thrombocytopenia 5 (ETV6)

Additional Organ Systems Affected
1. GATA2 deficiency syndromes (GATA2)
2. Autosomal dominant telomere syndromes (TERT and TERC)
3. Familial aplastic anemia/MDS due to SRP72 mutation (SRP72)
4. Ataxia-Pancytopenia Syndrome (SAMD9L mutation) and MIRAGE syndrome (SAMD9 mutation)
5. Shwachman-Diamond Syndrome (new causative genes: EFL1 and DNAJC21)
Key Management Issues

Decreased Platelet Number/Function

1. Familial platelet disorder with propensity to myeloid malignancies (*RUNX1*)
2. Thrombocytopenia 2 (*ANKRD26*)
3. Thrombocytopenia 5 (*ETV6*)

- Both germline *RUNX1* and *ETV6* mutations predispose to both myeloid and lymphoid malignancies; to date, germline *ANKRD26* mutations have only been associated with development of myeloid malignancies.

- Patients can bleed out of proportion to their platelet counts, since the platelets have abnormal aggregation. Therefore for surgery/childbirth, we recommend transfusion of normal platelets.
Key Management Issues

Familial platelet disorder with propensity to myeloid malignancies (*RUNX1*)
Clonal evolution in FPD/AML

ANKRD26 mutations confer a distinctive bone marrow pathology at baseline

hyposegmented and binucleated megakaryocytes
Known Familial MDS/AL Syndromes

Myeloid malignancies only
1. Familial AML with mutated *CEBPA* (*CEBPA*)
2. Familial MDS/AML due to *DDX41* mutation (*DDX41*)
3. Familial MPNs--14q32.2 genomic duplication (*ATG2B/GSKIP*)
 -- germline *RBBP6* mutation

Decreased Platelet Number/Function
1. Familial platelet disorder with propensity to myeloid malignancies (*RUNX1*)
2. Thrombocytopenia 2 (*ANKRD26*)
3. Thrombocytopenia 5 (*ETV6*)

Additional Organ Systems Affected
1. *GATA2* deficiency syndromes (*GATA2*)
2. Autosomal dominant telomere syndromes (*TERT* and *TERC*)
3. Familial aplastic anemia/MDS due to *SRP72* mutation (*SRP72*)
4. Ataxia-Pancytopenia Syndrome (*SAMD9L* mutation) and MIRAGE syndrome (*SAMD9* mutation)
5. Shwachman-Diamond Syndrome (new causative genes: *EFL1* and *DNAJC21*)
The next frontier: inherited lymphoid malignancies

- Liver cancer
- 2 GATA3 intron variants homozygous

- Ph-like ALL + 4 variants
- Ph-like ALL + 4 variants

- ALL
- + 4 variants
Realizing the goal of precision medicine in oncology

DEFINE:
- Baseline genetics
- Baseline epigenetics
- Acquired genetics in the tumor/stem cell product
- Acquired epigenetics in the tumor

to devise an effective treatment strategy for a particular patient

- Family history (FHx) is an important tool in hematology.
- Consider familial syndromes for all patients with hematopoietic malignancies → *How can we test patients systematically?*
 - How can we diagnose cases without relying on FHx?
 - Special consideration at the time of allogeneic stem cell transplantation!

- Both point mutations and genomic rearrangements can lead to germline predisposition, so testing should be comprehensive for both.
- It is critical to test true germline DNA (e.g., skin fibroblasts).
- Additional syndromes and pathways in leukemogenesis will be identified!